Systematic Analysis, Testing, and Improvement of CPSML

Tommaso Dreossi

Joint work with:

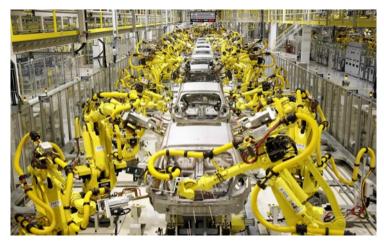
Daniel Fremont, Shromona Ghosh, Xiangyu Yue, Alexandre Donze Kurt Keutzer, Alberto Sangiovanni-Vincentelli, Sanjit A. Seshia

UC Berkeley

Cyber-Physical Systems (CPS)

Integration of computation with physical processes

Building systems



Factory automation

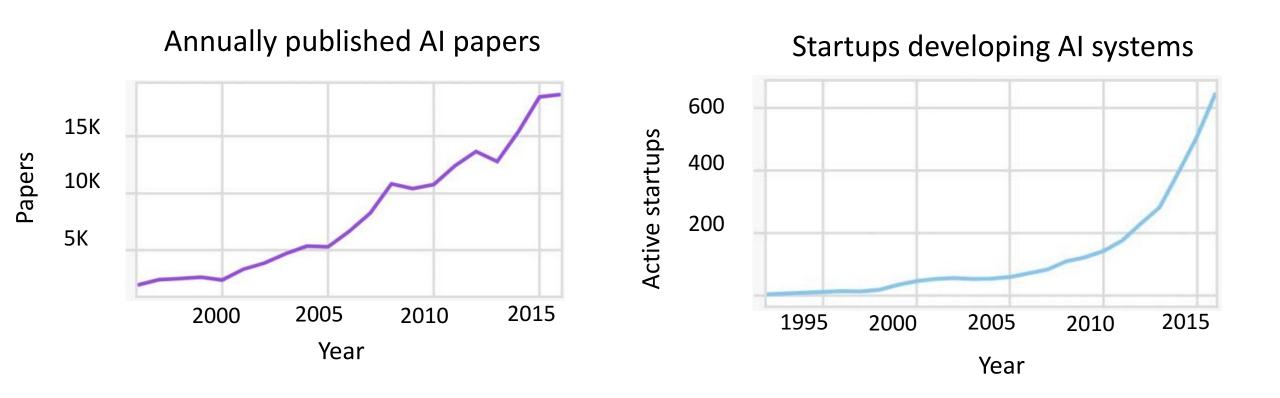
Automotive

Power generation

Smart cities ²

Cyber-Physical Systems + ML/AI (CPSML)

Growing use of Machine Learning/AI in CPS

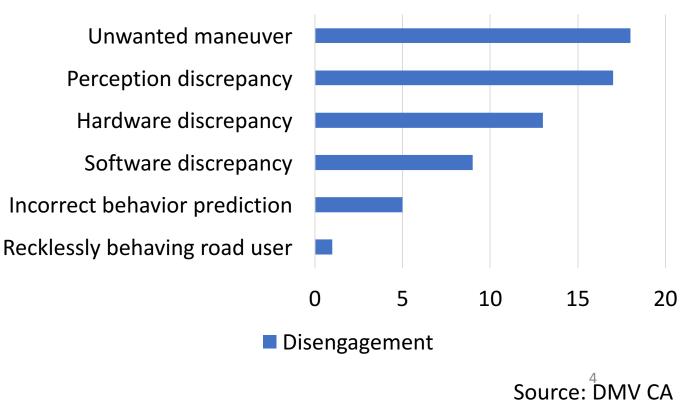


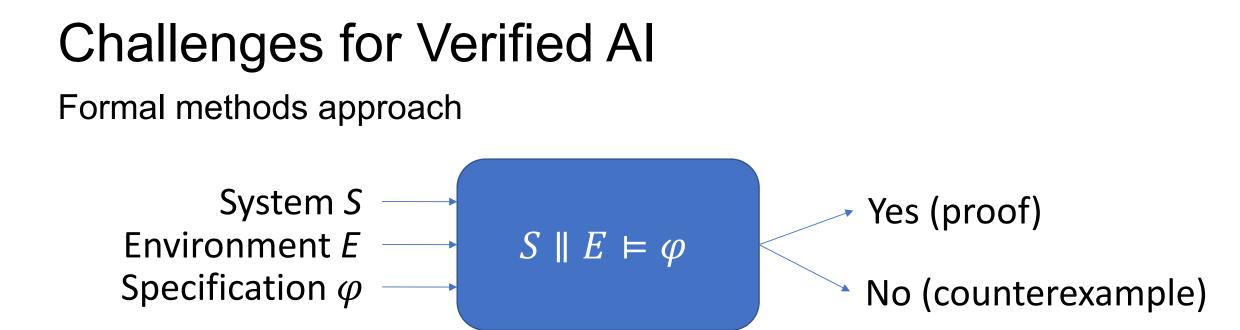
Cyber-Physical Systems + ML/AI (CPSML)

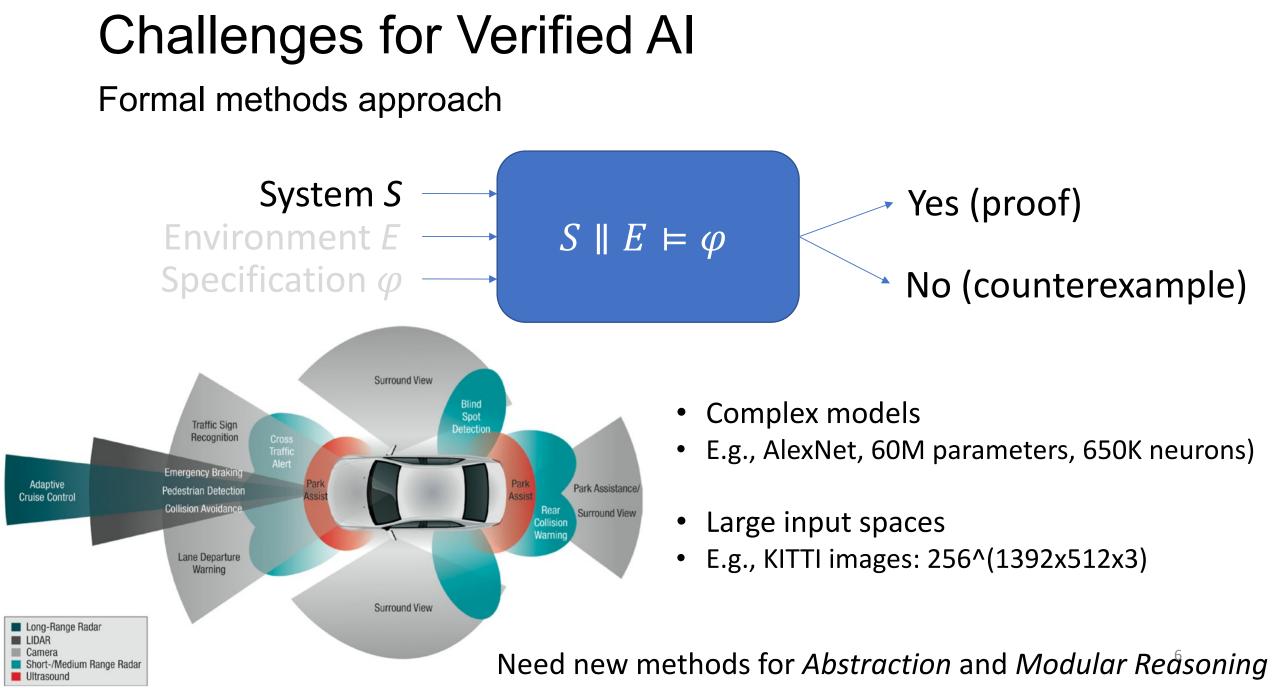
Growing use of Machine Learning/AI in CPS

Many safety-critical applications

Waymo disengagement report California, 2017







System S Yes (proof) $S \parallel E \models \varphi$

No (counterexample)

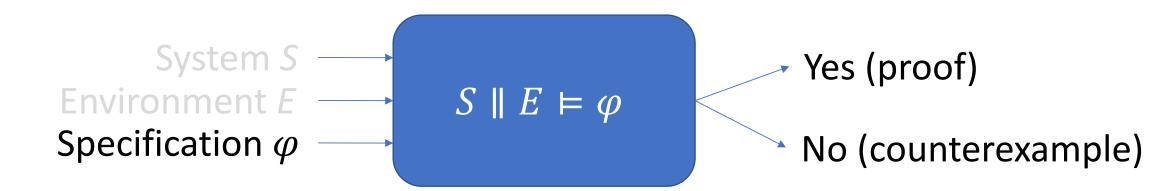
• Interaction with complex environments/agents

Specification φ

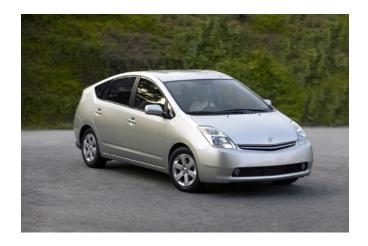
Need for representing *environment scenarios*

Challenges for Verified AI

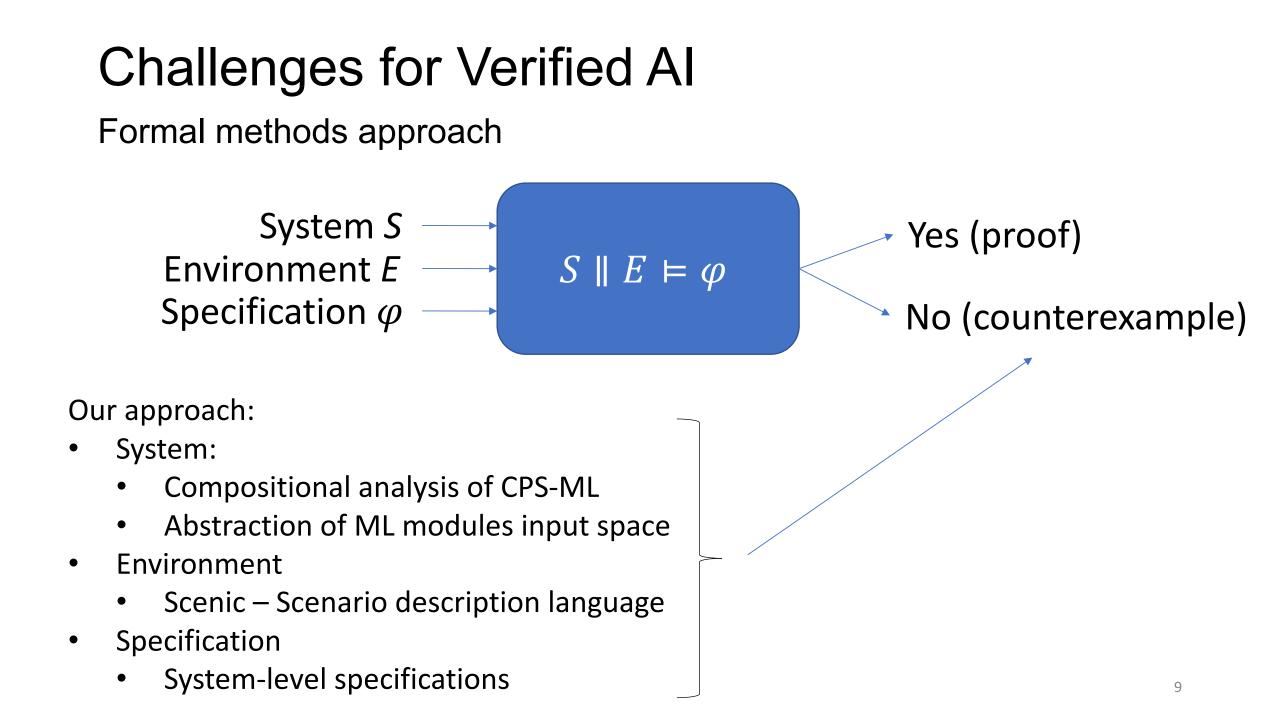
Formal methods approach



• How do you formalize perception tasks?



Need for new *specification form*⁸*alisms*

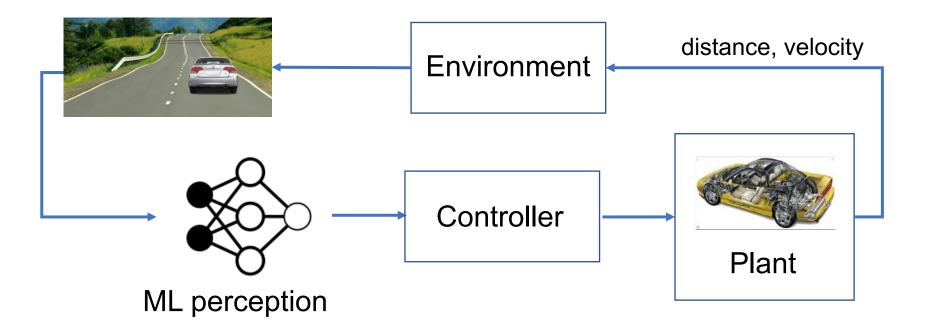


Outline

- 1. Running CPSML example Automatic emergency braking system
- 2. Specification
 - System- vs Module-level specification
- 3. System
 - Compositional falsification
 - ML input abstraction
 - Counterexample-guided augmentation
- 4. Environment
 - Scenic: Scenario description language
- 5. Conclusion

CPSML Example

Automatic Emergency Braking System (AEBS)



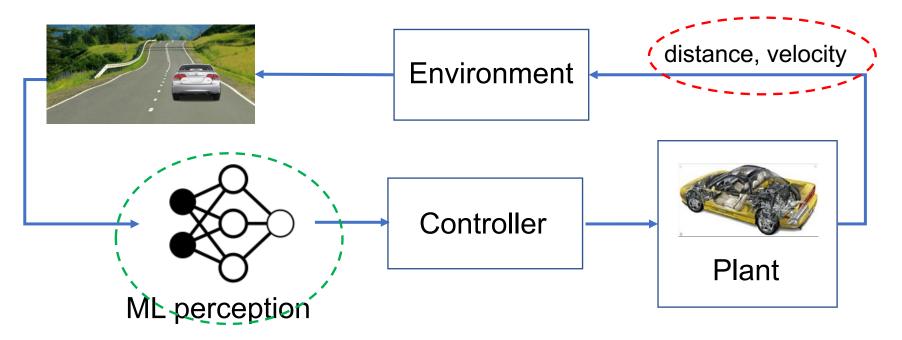
· Goal: brake when an obstacle is near

Challenges:

- How to explore distance/velocity?
- How to analyze images?
- How to combine distance, velocity, images?

Specification

System- vs Module-level Specification



- Goal: brake when an obstacle is near
- Specifications:
 - "Never collide" (distance > 0)
 - "Correctly detect obstacles"

Outline

- 1. Running CPSML example Automatic emergency braking system
- 2. Specification
 - System- vs Module-level specification
- 3. System
 - Compositional falsification
 - ML input abstraction
 - Counterexample-guided augmentation
- 4. Environment
 - Scenic: Scenario description language
- 5. Conclusion

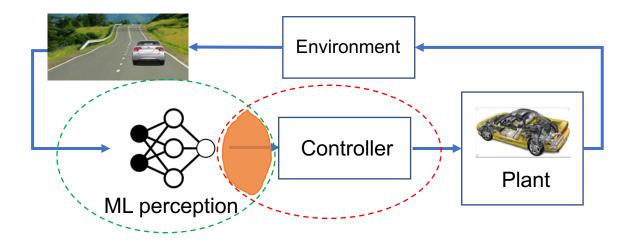
Compositional Falsification

CPSML input space intractable

- Idea: focus on meaningful CPS+ML input combinations
- Intuition: "If car is far, misclassification won't affect our system"

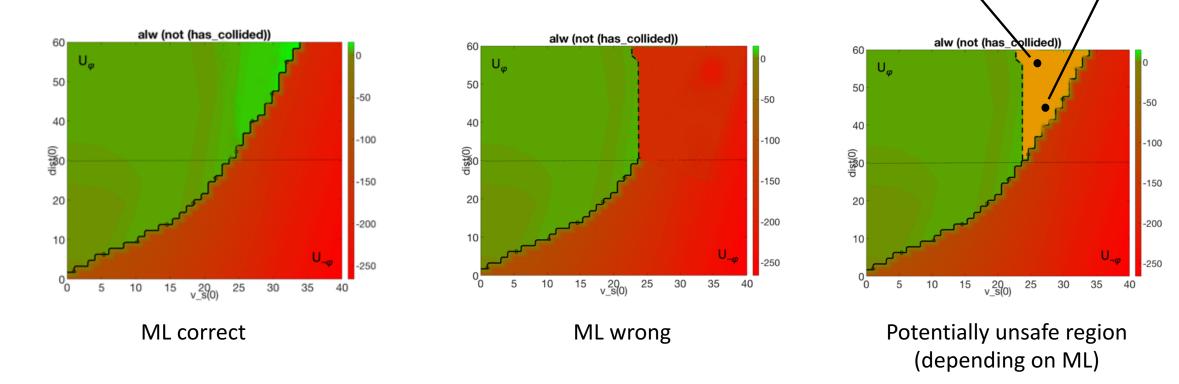
Strategy:

- 1. Analyze CPS gathering info on ML role
- 2. Use collected info to target ML
- 3. Compose CPS + ML narrowed input spaces
- 4. Perform targeted falsification



Compositional Falsification

- Identifying regions of interest for AEBS
- Perform optimistic/pessimistic analyses of NN



Pizzian I

Dreossi et. al, Compositional Falsification of Cyber-Physical Systems with Machine Learning Components, NFM 2017 15

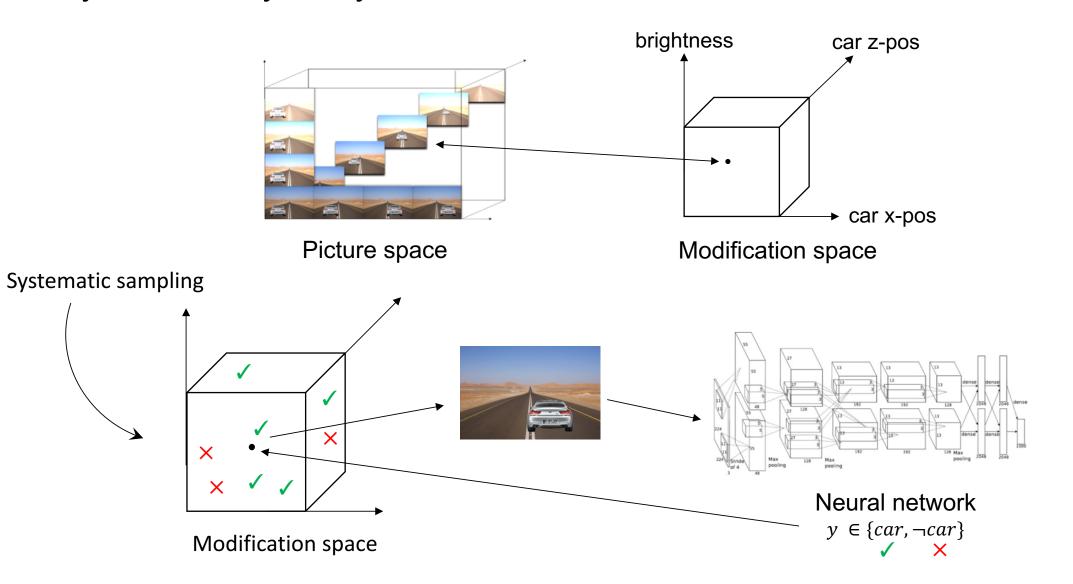
ML Analyzer

- How analyze ML feature space?
- E.g., image classifier: a lot of pictures to analyze

Idea: Focus on semantic alterations

Plausible alterations

ML Analyzer Systematically analyze modifications of interest



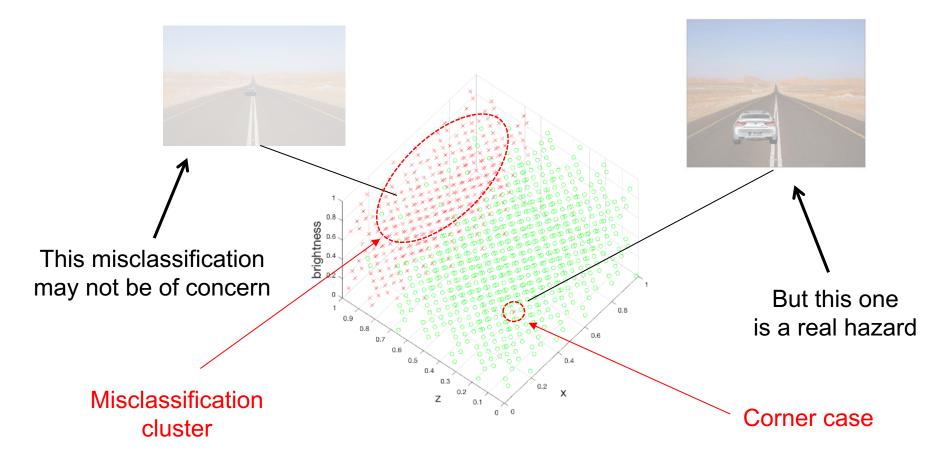
ML Analyzer Sampling methods

Method	Sampling speed	Diversity	Counterexample finding
Uniform random	\checkmark	×	×
Uniform random + distance constraint	×	_	×
Low-discrepancy	×	\checkmark	_
Cross entropy	×	×	\checkmark

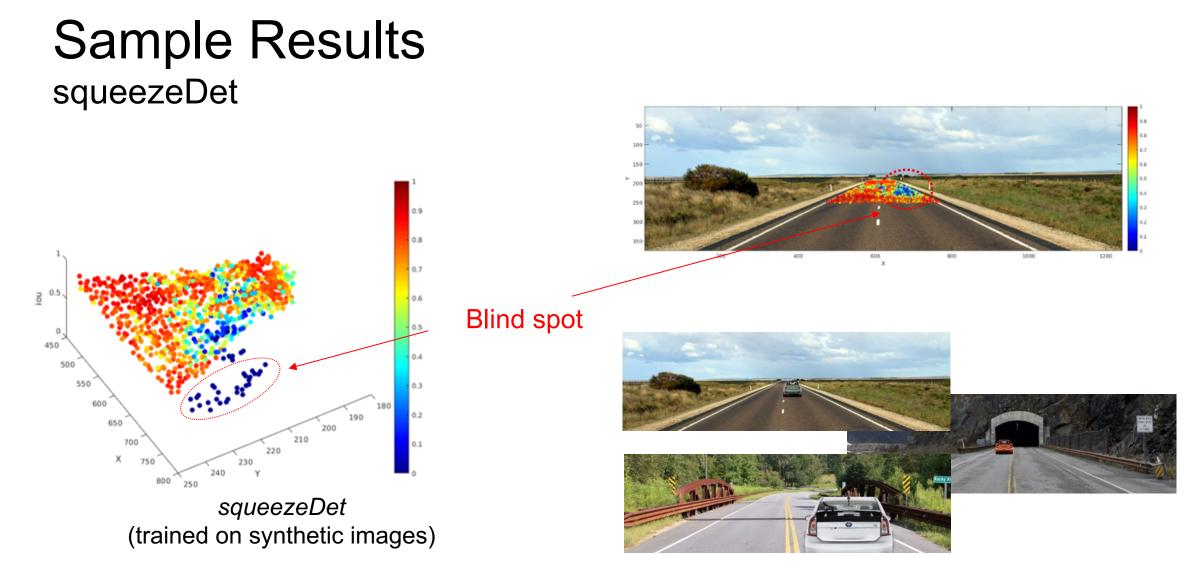
H. Niederreiter, "Random Number Generation and Quasi-Monte-Carlo Methods", 1992

R. Y. Rubinstein et al., "The Cross-Entropy Method, A Unified Approach to Combinatorial Optimization, Monte-Carlo Simulation, and Machine Learning", 2004

Sample Results AEBS



Inception-v3 Neural Network (pre-trained on ImageNet using TensorFlow)



Example of counterexamples

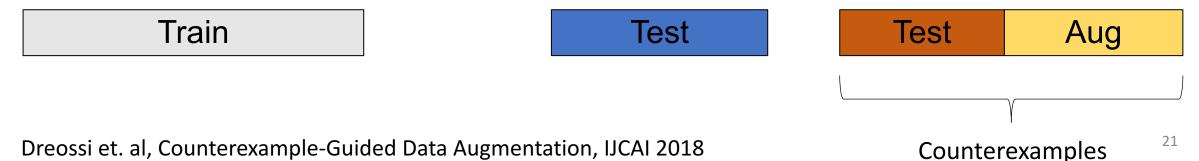
Counterexample-guided augmentation

- What to do with the generated counterexamples?
- Analyze them and provide explanations (error tables) 1.
- 2. Augment training sets

Misclassifications

Id	Car color	Background	Orientation
1	Red	Countryside	Front
2	Orange	Forest	Back
3	White	Forest	Front
4	Green	Forest	Back

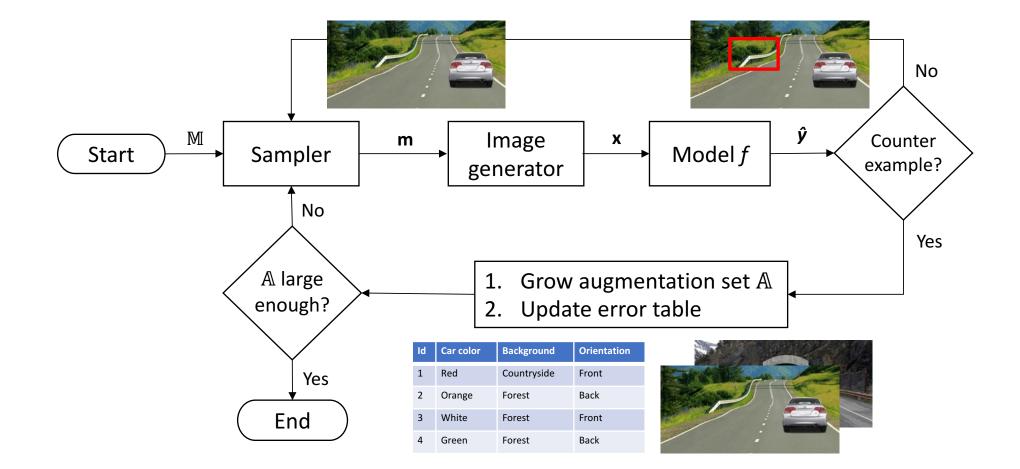
Error table



Dreossi et. al, Counterexample-Guided Data Augmentation, IJCAI 2018

Counterexample-guided augmentation

Find counterexamples and augment training set



Dreossi et. al, Counterexample-Guided Data Augmentation, IJCAI 2018

Augmentation

Augmentation Comparison

Sampling methods comparison

Model	Precision	Recall	t (sec)
Original	.61	.75	
Standard augmentation	.69	.80	
Uniform random	.76	.87	~30
Constrain	.75	.86	~92
Low-discrepancy	.79	.87	~55
Cross-entropy	.78	.78	~70

Outline

- 1. Running CPSML example Automatic emergency braking system
- 2. Specification
 - System- vs Module-level specification
- 3. System
 - Compositional falsification
 - ML input abstraction
 - Counterexample-guided augmentation
- 4. Environment
 - Scenic: Scenario description language
- 5. Conclusion

Environment Description

Idea: Use simulators to model environment (e.g., GTAV)

Problem

- Large and unstructured input space
- Generate meaningful scenes (for testing or training)

Car Model

Car Location

Car Orientation

Number of Cars

Car Color

Weather

Scene Background

Time of Day

Scenic

A Scenario Description Language

- Scenic: probabilistic programming language defining distributions over scenes
- Example: a badly parked car

```
from gta import Car, curb, roadDirection
```

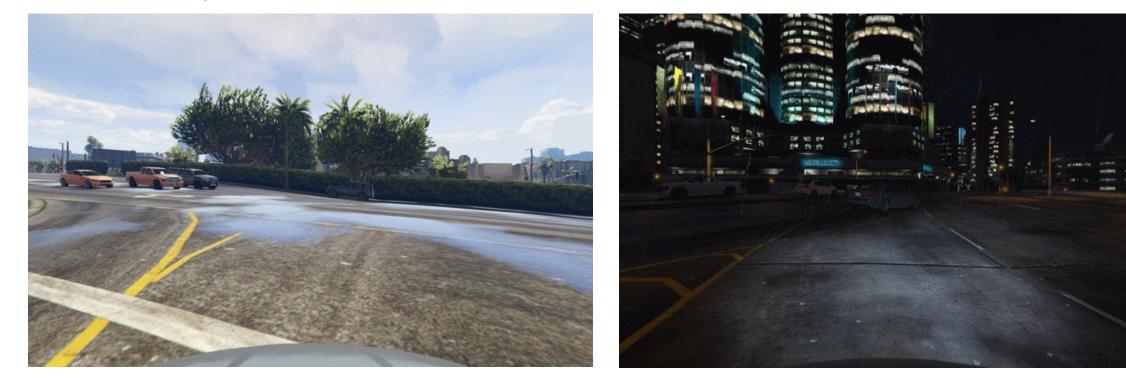
```
ego = Car
```

```
spot = OrientedPoint on visible curb
badAngle = Uniform(1.0, -1.0) * (10, 20) deg
Car left of (spot offset by -0.5 @ 0),
    facing badAngle relative to roadDirection
```


Scenic Applications Testing

Exploring the behavior of the system under different conditions:

Bright and clear weather



Dark and rainy weather

Scenic Applications Training

Generate hard cases, e.g., one car partially occluding another:

```
from gta import Car
ego = Car with roadDeviation (-10, 10) deg
c = Car visible,
    with roadDeviation (-10, 10) deg
leftRight = Uniform(1.0, -1.0) * (1.25, 2.75)
Car beyond c by leftRight @ (4, 10),
    with roadDeviation (-10, 10) deg
```


Scenic Applications Reasoning

Scenic Applications Reasoning

Scenic Applications Reasoning

Scenic makes it easy to generalize along different dimensions:

Add noise

Change car model

Change global position

Conclusion

Summary

- Framework for system-level counterexamples
- CNN analyzer (simulation based)
- Counter-example guided augmentation
- Scenic: Scenario description language

Future work

- Mix real/synthetic data
- Domain adaptation/randomization
- More complex data: lidar, radar, etc.